Author: Jiří Cihlář
Institution: Jan Evangelista Purkyně University in Ústí nad Labem
Author: Petr Eisenmann
Institution: Jan Evangelista Purkyně University in Ústí nad Labem
Author: Eva Hejnová
Institution: Jan Evangelista Purkyně University in Ústí nad Labem
Author: Jiří Přibyl
Institution: Jan Evangelista Purkyně University in Ústí nad Labem
Year of publication: 2020
Source: Show
Pages: 97-108
DOI Address:
PDF: tner/202003/tner6108.pdf

The paper describes the results of a study whose aim was to explore correlations among the components of the construct Culture of problem solving (mathematical intelligence, reading comprehension, creativity and ability to use existing knowledge) and six dimensions of Scientific reasoning, which was tested by the Lawson’s Classroom Test. The total of 180 pupils from the Czech Republic aged 14-15 took part in this study. The results show that the dimensions proportional reasoning, control of variables and probability reasoning strongly correlate with the components mathematical intelligence, reading comprehension and ability to use existing knowledge.


  • American Association for the Advancement of Science. (1989). Project 2061: Science for all Americans. Washington, DC: AAAS.
  • Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., Wu, N. (2009). Learning and Scientific Reasoning. Science, 323, 586-587. DOI: 10.1126/science.1167740
  • Cihlář, J., Eisenmann, P., Hejnová, E., & Přibyl, J. (2018). Relations between Scientific Reasoning and Culture of Problem Solving. Journal on Efficiency and Responsibility in Education and Science, 11, 38-44. DOI: 10.7160/eriesj.2018.110203
  • Chamberlin, S.A., & Moon, S.M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Journal of Secondary Gifted Education, 17, 37-47. DOI: 10.4219/jsge-2005-393
  • Dean, D. Jr., & Kuhn, D. (2007). Direct instruction vs. discovery: the long view. Science Education, 91, 384-397. DOI: 10.1002/sce.20194
  • Doulík, P., Eisenmann, P., Přibyl, J., & Škoda, J. (2016). Unconventional Ways of Solving Problems in Mathematics Classes. The New Educational Review, 43, 53-66. DOI: 10.15804/tner.2016.43.1.04
  • Dvořáková, I. (2011). Vědecké myšlení žáků - Jak ho lze rozvíjet a testovat [Scientific reasoning ability - How to develop and test it]. In M. Randa (Ed.), Moderní trendy v přípravě učitelů 5 [New trends in teachers’ education 5]. Plzeň: University of West Bohemia. [CD-ROM]. Available from
  • Eisenmann, P., Novotná, J., Přibyl, J., & Břehovský, J. (2015). The development of a culture of problem solving with secondary students through heuristic strategies. Mathematics Education Research Journal, 27, 535-562. DOI: 10.1007/s13394-015-0150-2
  • Fuentes, P. (1998). Reading Comprehension in Mathematics. The Clearing House, 72, 81-88. DOI: 10.1080/00098659809599602
  • Gardner, H.E. (1993). Frames Of Mind: The Theory Of Multiple Intelligences. New York (NY): Basic Books.
  • Guilford, J.P. (1967). The nature of human intelligence. New York (NY): McGraw-Hill.
  • Han, J. (2013). Scientific Reasoning: Research, Development, and Assessment, [Unpublished Thesis]. Ohio: The Ohio State University.
  • Juter, K., & Sriraman, B. (2011). Does High Achieving in Mathematics = Gifted and/or Creative in Mathematics? In B. Sriraman & K.H. Lee (Eds.), The Elements of Creativity and Giftedness in Mathematics. (pp. 45-65). Rotterdam, Netherlands: Sense Publishers.
  • Kadir, L., & Satriawati, G. (2017). The Implementation of Open-Inquiry Approach to Improve Students’ Learning Activities, Responses, and Mathematical Creative Thinking Skills. Journal on Mathematics Education, 8, 103-114. DOI: 10.22342/jme.8.1.3406.103114
  • Kotsari, C., & Smyrnaiou, Z. (2017). Inquiry based learning and meaning generation through modelling on geometrical optics in a constructionist environment. European Journal of Science and Mathematics Education, 5, 14-27.
  • Kwon, O.N., Park, J.S., & Park, J.H. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7, 51-61.
  • Lawson, A.E. (1978). The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 15, 11-24. DOI: 10.1002/tea.3660150103
  • Md Hassan, N., & Rahman, S. (2017). Problem Solving Skills, Metacognitive Awareness, and Mathematics Achievement: A Mediation Model. The New Educational Review, 49, 201-212. DOI: 10.15804/tner.2017.49.3.16
  • Padilla, M. (1990). The science process skills. Research Matters - to the Science Teacher, No. 9004. Available from
  • Papáček, M. (2010). Badatelsky orientované přírodovědné vyučování - cesta pro biologické vzdělávání generací Y, Z a alfa? [Inquiry based science education: A way for the biology education of generations Y, Z, and alpha?] Scientia in Educatione, 1, 33-49. DOI: 10.14712/18047106.4
  • Pape, S.J. (2004). Middle school children’s problem-solving behavior: A cognitive analysis from a reading comprehension perspective. Journal for Research in Mathematics Education, 35, 187-219. DOI: 10.2307/30034912
  • Roth, W.M., & Milkent, M.M. (1991). Factors in the Development of Proportional Reasoning Strategies by Concrete Operational College Students. Journal of Research in Science Teaching, 28, 553-566. DOI: 10.1002/tea.3660280608
  • Schoenfeld, A.H. (1982). Measures of problem-solving performance and of problem-solving instruction. Journal for Research in Mathematics Education, 13, 31-49. DOI: 10.2307/748435
  • Shayer, M., & Adey, P.S. (1993). Accelerating the development of formal thinking in middle and high school students IV: three years after a two-year intervention. Journal of Research in Science Teaching, 30, 351-366. DOI: 10.1002/tea.3660300404
  • Sriraman, B. (2005). Are Giftedness and creativity synonyms in mathematics? The Journal of Secondary Gifted Education, XVII, 20-36. DOI: 10.4219/jsge-2005-389
  • Vilenius-Tuohimaa, P.M., Aunola, K., & Nurmi, J.-E. (2008). The association between mathematical word problems and reading comprehension. Educational Psychology, 28(4), 409-426. DOI: 10.1080/01443410701708228
  • Wu, M., & Adams, R. (2006). Modelling mathematics problem solving item responses using a multidimensional IRT model. Mathematics Education Research Journal, 18, 93-113. DOI: 10.1007/BF03217438

Wiadomość do:



© 2017 Adam Marszałek Publishing House. All rights reserved.

Projekt i wykonanie Pollyart