Znaczenie ruchu w edukacji matematycznej Ucieleśnione poznanie a kształtowanie się umysłowych reprezentacji liczb u dzieci

Author: Małgorzata Gut
Author: Natalia Witkowska
Year of publication: 2018
Source: Show
Pages: 128-149
DOI Address: https://doi.org/10.15804/kimwe2018111
PDF: kim/2018_1/kim2018112.pdf

The importance of motor activity in mathematics education. Embodied cognition and development of mental representation of numbers in children
This paper presents the review of literature concerning the importance of relationship between motor and cognitive activity in mathematical skills development. Cognitive and motor processing seem not to be related as well as the use of motor activity in the processing of numbers is far from an intuitive approach in mathematical education. A great number of studies show, however, that cognitive processes are embodied and therefore the involvement of movement in tasks requiring the participation of cognitive processes gives extremely positive results. This applies to both mathematics education practice in the case of children with normal development and those with a cognitive deficit in this area, called developmental dyscalculia. It is not surprising, therefore, the growing popularity of modern technologies that involve movement, which are used for cognitive math skills training, such as motion sensors, dance mats or educational games with elements of movement and dance. The beneficial influence of motor activity in mathematical abilities development is related to the spatial organization of representations of numbers arranged on the so-called Mental Number Line. It has been confirmed that such motor training develops and strengthens this spatial-numerical association, which is a predictor of skills of children in arithmetic.



  • Ardila A., Rosselli M., Acalculia and Dyscalculia, „Neuropsychology Review” 2002, t. 12, nr 4.
  • Bazzini L., Sabena C., Villa B., Meaningful context in mathematical problem solving: a case study, sprawozdanie z międzynarodowej konferencji naukowej „The 3rd International Conference on Science and Mathematics Education” 2009.
  • Booth J.L., Siegler R.S., Developmental and individual differences in pure numerical estimation, „Developmental Psychology” 2006, t. 41, nr 6.
  • Burte H., Gardony A.L., Hutton A., Taylor H.A., Think3d!: Improving mathematics learning through embodied spatial training, „Cognitive Research: Principles and Implications” 2017, t. 2, nr 1.
  • Butterworth B., The development of arithmetical abilities, „Journal of Child Psychology and Psychiatry” 2005, t. 46, nr 1.
  • Cameron C.E., Brock L.L., Murrah W.B., Bell L.H., Worzalla S.L., Grissmer D., Morrison F.J., Fine motor skills and executive function both contribute to kindergarten achievement, „Child Development” 2012, t. 83, nr 4.
  • Cappelletti M., Freeman E.D., Butterworth B.L., Time Processing in Dyscalculia, „Frontiers in Psychology” 2001, t. 2, nr 364.
  • Cipolotti L., Butterworth B., Denes G., A Specific deficit for numbers in a case of dense Acalculia, „Brain” 1991, t. 114, nr 6.
  • Cipora K., Szczygieł M., Hohol M., Palce, które liczą: znaczenie liczenia na palcach dla poznania matematycznego u człowieka dorosłego, „Psychologia – Etologia – Genetyka” 2014, nr 30.
  • Dackermann T., Fischer U., Nuerk H.C., Cress U., Moeller K., Applying embodied cognition: from useful interventions and their theoretical underpinnings to practical applications, „ZDM Mathematics Education” 2017, t. 49.
  • de Hevia M.D., Spelke E.S., Number-space mapping in human infants, „Psychological Science” 2010, t. 21.
  • Dehaene S., Bossini S., Giraux P., The Mental Representation of Parity and Number Magnitude, „Journal of Experimental Psychology: General” 1993, t. 122, nr 3.
  • Dehaene S., Molko N., Cohen L., Wilson A.J., Arithmetic and the brain, „Current Opinion in Neurobiology” 2004, t. 14, nr 2.
  • Dehaene S., Number sense. How the mind creates mathematics, United States of America 1997.
  • Dehaene S., Piazza M., Pinel P., Cohen L., Three parietal circuits for number processing, „Cognitive Neuropsychology” 2003, t. 20.
  • Dehaene S., Tzourio N., Frak V., Reynaud L., Cohen L., Mehler J., Mazoyer B., Cerebral activations during number multiplication and comparison: A PET study, „Neuropsychologia” 1996, t. 34, nr 11.
  • Dehaene S., Varieties of numerical abilities, „Cognition” 1992, t. 44.
  • Derra A., Język i jego problematyczne właściwości w teorii nrma Chomsky’ego, [w:] Modularność umysłu, red. Sz. Wróbel, Poznań–Kalisz 2007.
  • DeSutter D., Stieff M., Teaching students to think spatially through embodied actions: Design principles for learning environments in science, technology, engineering, and mathematics, „Cognitive Research: Principles and Implications” 2017, t. 2.
  • Domahs F., Moeller K., Huber S., Willmes K., Nuerk H.C., Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures, „Cognition” 2010, t. 16.
  • Fischer M.H., Shaki S., Spatial associations in numerical cognition – From single digits to arithmetic, „The Quarterly Journal of Experimental Psychology” 2014, t. 67, nr 8.
  • Fischer U., Moeller K., Bientzle M., Cress U., Nuerk H.C., Sensi-motor spatial training of number magnitude representation, „Psychonomic Bulletin & Review” 2011, t. 18, nr 1.
  • Fradkin L., Teaching algebra and calculus to engineering fresher’s via Socratic Dialogue and Eulerian sequencing, sprawozdanie z międzynarodowej konferencji naukowej „International Conference on Engineering Education ICEE”, Gliwice, 18–22 lipca 2010 r.
  • Glenberg A.M., Embodiment as a unifying perspective for psychology, „Wiley Interdisciplinary Reviews: Cognitive Science” 2010, t. 1, nr 4.
  • Goldin-Meadow S., Wagner Alibali M., Gesture’s Role in Speaking, Learning, and Creating Language, „Annual Review in Psychology” 2001, t. 64.
  • Gonigroszek D., Językoznawstwo kognitywne: „ucieleśniony” umysł i znaczenie. „Językoznawstwo” 2011, nr 5(1).
  • Held R., Hein A., Movement-produced stimulation in the development of visually guided behavior, „Journal of Comparative and Physiological Psychology” 1963, t. 56, nr 5.
  • Hohol M.L., Matematyczność ucieleśniona, [w:] Oblicza racjonalności. Wokół myśli Michała Hellera, red. B. Brożek, J. Mączka, W.P. Grygiel, M.L. Hohol, Kraków 2011.
  • Hubbard E.M., Piazza M., Pinel P., Dehaene S., Interactions between number and space in parietal cortex, „Nature Review Neuroscience” 2005, t. 6.
  • Jordan N.C., Kaplan D., Ramineni C., Locuniak M.N., Development of number combination skill in the early school years: when do fingers help?, „Developmental Science” 2008, t. 11, nr 5.
  • Kiereś H., Filozofi a współczesna, [w:] U źródeł tożsamości kultury europejskiej, red. T. Rakowski, Lublin 1994.
  • Kikas E., Peets K., Palu A., Afanasjev J., The role of individual and contextual factors in the development of maths skills, „Educational Psychology: An International Journal of Experimental Educational Psychology” 2009, t. 29, nr 5.
  • Kucian K., Grond U., Rotzer S., Henzi B., Schönmann C., Plangger F., Gälli M., Martin E., von Aster M., Mental number line training in children with developmental dyscalculia, „Neuroimage” 2011, t. 57.
  • Kucian K., Loenneker T., Dietrich T., Dosch M., Martin E., von Aster M., Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study, „Behavioral & Brain Function” 2006, t. 2.
  • Kucian K., von Aster M., Developmental dyscalculia, „Eur J Pediatr” 2015, t. 174, nr 1.
  • Lakoff G., Johnson M., Metafory w naszym życiu, tłum. T.P. Krzeszowski, Warszawa 2010.
  • Lakoff G., Núñez R.E., Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being, New York 2000.
  • Landerl K., Bevan A., Butterworth B., Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students, „Cognition” 2004, t. 93, nr 2.
  • Levenson E., Tirosh D., Tsamir P., Preschool Geometry Theory, Research, and Practical Perspectives, https://www.sensepublishers.com/media/785-preschool--geometry.pdf [dostęp: 12.03.2017].
  • Link T., Moeller K., Huber S., Fischer U., Nuerk H.C., Walk the number line – An embodied training of numerical concepts, „Trends in Neuroscience and Education” 2013, t. 2.
  • Mazzocco M.M.M., Räsänen P., Contributions of longitudinal studies to evolving defi nitions and knowledge of developmental dyscalculia, „Trends in Neuroscience and Education” 2013, t. 2, nr 2.
  • Moeller K., Fischer U., Nuerk H.C., Cress U., Computers in mathematics education – Training the mental number line, „Computers in Human Behavior” 2015, t. 48.
  • Molko N., Cachia A., Riviere D., Mangin J.F., Bruandet M., Le Bihan D., Cohen L., Dehaene S., Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin, „Neuron” 2003, t. 40.
  • Munro J., Dyscalculia: A unifying concept in understanding mathematics learning disabilities, „Australian Journal of Learning Disabilities” 2003, t. 8, nr 4.
  • Mussolin C., Mejias S., nrl M.P., Symbolic and nonsymbolic number comparison in children with and without dyscalculia, „Cognition” 2010, t. 115.
  • Orona H.M.O., Maldonado G.S., Martínez N.P.S., Kinect TEAM: Kinesthetic Learning Applied to Mathematics Using Kinect, „Procedia Computer Science” 2015, t. 75.
  • Patro K., Nuerk H.C., Cress U., Haman M., How number-space relationships are assessed before formal schooling: A taxonomy proposal, „Frontiers in Psychology” 2014, t. 5, nr 419.
  • Plerou A., Dealing With Dyscalculia Over Time, Sprawozdanie z międzynarodowej konferencji naukowej „International Conference on Information Communication Technologies in Education (ICICTE)”, Greece 2014.
  • Pogonowski J., Geneza matematyki wedle kognitywistów, „Investigationes Linguisticae” 2011, nr 23.
  • Pokropski M., Ciało. Od fenomenologii do kognitywistyki, „Przegląd Filozofi czno-Literacki” 2011, nr 4(32).
  • Purohit S., Margaj S., Analysis and Detection of Dyscalculia at Early Age Using Computer Assisted Friendly Tests [CrAFT], „International Journal of Emerging Technology and Advanced Engineering” 2008, t. 2, nr 12.
  • Reikerås E., Moser T., Tønnessen F.E., Mathematical skills and motor life skills in toddlers: do differences in mathematical skills reflect differences in motor skills? „European Early Childhood Education Research Journal” 2015, t. 25, nr 1.
  • Restle F., Speed of adding and comparing numbers, „Journal of Experimental Psychology” 1970, t. 83.
  • Rizzolatti G., Fogassi L., Gallese V., Mirrors In Th e Mind, „Scientifi c American” 2006.
  • Shalev R.S., Auerbach J., Manor O., Gross-Tsur V., Developmental dyscalculia: prevalence and prognosis, „European Child & Adolescent Psychiatry” 2000, t. 9, nr 2.
  • Shalev R.S., Developmental Dyscalculia, „Journal of Child Neurology” 2004, t. 19, nr 10.
  • Smith E., de Villiers M., A Comparative Study of Two Van Hiele Testing Instruments, Sprawozdanie z międzynarodowej konferencji naukowej „The 13th Conference for the Psychology of Mathematics Education (PME-13)”, Paris 1989.
  • Szczygieł M., Cipora K., Hohol M., Liczenie na palcach w ontogenezie i jego znaczenie dla rozwoju kompetencji matematycznych, „Psychologia Rozwojowa” 2015, nr 20.
  • Tatarkiewicz W., Historia filozofi i, t. II, Filozofi a nowożytna do roku 1830, Warszawa 2018.
  • Tran C., Smith B., Buschkuehl M., Support of mathematical thinking through embodied cognition: nrdigital and digital approaches, „Cognitive Research: Principles and Implications” 2017, t. 2.
  • Trybulec B., Fenomenologia a kognitywistyka – dwie metody analizy podmiotu poznania. Perspektywa współpracy i problemy, „Filozofia i nauka. Studia filozoficzne i interdyscyplinarne” 2015, t. 3.
  • Trzópek J., Na tropach podmiotu. Między filozofi cznym a empirycznym ujęciem podmiotowości, Kraków 2013.
  • Veldine B.N., Golinkoff R.M., Hirsh-Pasek K., Newcombe N.S., Spatial skills, their development, and their links to mathematics, „The Society for Research in Child Development” 2017, t. 82, nr 1.
  • Verdine B.N., Irwin C.M., Golinkoff R.M., Hirsh-Pasek K., Contributions of Executive Function and Spatial Skills to Preschool Mathematics Achievement, „Journal of Experimental Child Psychology” 2014, t. 126.
  • von Aster M.G., Shalev R.S., Number development and developmental dyscalculia, „Developmental Medicine & Child Neurology” 2007, t. 49, nr 11.
  • Wilson M., Six views of embodied cognition, „Psychonomic Bulletin&Review” 2002, t. 9, nr 4.
  • Yazdani M.A., The Gagne Van Hieles Connection: A Comparative Analysis of Two Theoretical Learning Frameworks, „Journal of Mathematical Sciences & Mathematics Education” 2008, t. 3, nr 1.

embodied cognition cognitive-motor trainings modern technologies mathematics education

Message to:



© 2017 Adam Marszałek Publishing House. All rights reserved.

Projekt i wykonanie Pollyart